
Renormalization group study of intervalley scattering and valley splitting in a two-valley system

Alexander Punnoose*
Physics Department, City College of the City University of New York, New York, New York 10031, USA

�Received 30 September 2009; revised manuscript received 17 November 2009; published 7 January 2010�

Renormalization group equations are derived for the case when both valley splitting and intervalley scatter-
ing are present in a two-valley system. A third scaling parameter is shown to be relevant when the two bands
are split but otherwise distinct. The existence of this parameter changes the quantitative behavior at finite
temperatures, but the qualitative conclusions of the two-parameter theory are shown to be unaffected for
realistic choice of parameters.
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I. INTRODUCTION

Renormalization group �RG� studies of multivalley two-
dimensional electron gas �2DEG� systems have been very
successful in quantitatively describing the transport proper-
ties of electrons confined in silicon inversion layers �metal-
oxide-semiconductor field-effect transistors �MOSFETs��.1–5

In a disordered medium, for temperatures kBT�� /�, where
1 /� is the elastic scattering rate, the propagating modes are
diffusive, and it is now well understood that these modes
play a central role in determining the transport properties at
low temperatures.6 In two dimensions, in particular, the ef-
fects of diffusion are profound. The electron-electron �e-e�
scattering amplitudes, for example, develop nonanalytic cor-
rections that result in enhanced correlations at low energies.7

It has been shown that RG theory applied to a weakly disor-
dered system is able to capture this scale �energy or tempera-
ture� dependence to all orders in the e-e scattering ampli-
tudes making it the most promising analytical technique
available to understand the physics of disordered systems.
�Pedagogical reviews of the RG theory can be found in Refs.
8 and 9.�

Weak disorder implies that � /��EF, where EF is the
Fermi energy. Typical high-mobility two-dimensional semi-
conducting devices have very small Fermi energies with a
scattering rate which is even smaller due to the very high
mobility of the samples making it very difficult to access the
diffusive region at experimentally reasonable temperatures.
Si-MOSFETs, on the other hand, have only moderately high
mobilities so that � /� is of the order of a kelvin while EF is
of the order of a few kelvin. The impurity scattering in these
inversion layers is short ranged in character making quantum
scattering the dominant scattering mechanism, while semi-
classical effects arising from the impurity potential landscape
are negligible at low temperatures. For these reasons, as
noted in the beginning, RG theory has been particularly suc-
cessful in describing the properties of electrons in silicon
inversion layers. �See Ref. 3 for how the diffusive regime is
identified experimentally and for a quantitative comparison
of theory with experiment.�

The conduction band of an n-�001� silicon inversion layer
has two almost degenerate valleys located close to the X
points in the Brillouin zone.10 The abrupt change in the po-
tential at the interface, which breaks the symmetry in the z
direction perpendicular to the 2D plane, leads to the splitting

of the two valleys. Although intervalley scattering originates
from both impurity scattering and scattering due to e-e inter-
actions, the imperfections at the interface, which are distrib-
uted on the atomic scale, are the main source of the large
momentum transfer Q0 in the z direction needed for interval-
ley scattering.

The RG theory developed in Ref. 1 considered the valley
degrees of freedom to be degenerate and distinct; hence,
quantitative comparisons with experiments performed in Ref.
3 were limited to temperatures larger than the valley split-
ting, �v, and the intervalley scattering rate, � /��, both scales
being sample dependent. This paper develops the relevant
scaling equations in the presence of valley splitting and in-
tervalley scattering. When combined with the scaling equa-
tions in a parallel magnetic field in the presence of valley
splitting developed in Ref. 11, they provide a complete de-
scription of the low-temperature transport properties of
MOSFETs. It should be noted that the RG theory is devel-
oped to first order in the resistance �one-loop� and hence is
applicable only in the metallic phase not too close to the
observed metal-insulator transition.12 Also, since it is seen
experimentally that the phase breaking rate saturates at low
temperatures for low electron densities,13 where the results
obtained in this paper are most relevant, the contribution
from the cooperon �particle-particle� channel has been sup-
pressed in our calculations.

The scaling equations are presented in three different tem-
perature regimes: �i� high-temperature region, T�Tv and T�,
where kBTv=�v and kBT�=� /��, �ii� low-temperature re-
gion, T�T�, �iii� and intermediate temperature region, T�

�T�Tv. The last of the three regions is relevant when the
band splitting is large so that effective mixing of the valleys
due to impurity scattering occurs only at sufficiently low
temperatures; it is shown that the standard two-parameter
description has to be modified in this case to include a third
scaling variable which has quantitative effects at finite tem-
perature but does not affect the asymptotic conclusions of the
two-parameter theory. The interaction in the Cooperon chan-
nel has been suppressed in these calculations.

II. DIFFUSION MODES AND FERMI-LIQUID
AMPLITUDES

Electrons in valleys can be conveniently labeled using
additional valley indices �z=	. �For our purpose, the num-
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ber of valleys nv=2 located at 	Q0ẑ, where Q0�0.85

 �2� /a� with a being the lattice constant of silicon.� This
increases the number of single-particle states to �spin�

 �valley�=4. Since the diffusion modes, responsible for the
relaxation of density and spin perturbations �and valley in
our case� in a disordered system at long times and distances,
formally occur via particle-hole excitations, the correspond-
ing number of �particle� � �hole� diffusion modes equals 16.
This is a fourfold increase from the case of one valley and
has significant quantitative effects on transport as shown in
Ref. 1. At low temperatures, some of these modes develop
gaps �cutoffs� proportional to �v and � /�� and are therefore
ineffective �nonsingular� for T below the characteristic tem-
perature scales Tv and T�,14,15 leading to quantitatively dif-
ferent scaling as the temperature is varied.

A. Single-particle properties

At low electron densities the mobility of a 2DEG is de-
termined by the charged centers within the SiO2 layer. Due to
the short-ranged nature of the impurity scattering in silicon
inversion layer structures, the Drude relation for the mobility,
�=e� /m, gives a direct measure of the single-particle life-
time, �. Here, e and m are the charge and the effective mass
of the electron, respectively. Ando16 argued that the mobility
is also determined partially by the intervalley scattering rate.
To this end, the two different scattering rates, that is, the
intravalley and intervalley rates, can be incorporated by in-
troducing two scattering potentials,15 u�q� and v�q�, respec-
tively. The potential u�q� is slowly varying on the scale of
1 /a if the impurities in the oxide layer is uniformly distrib-
uted, while v�q� is a rapidly oscillating function with mo-
mentum of the order of 1 /a. Hence, the random average of
the potentials �u�q�v�q��=0, with u�q� and v�q� satisfying

�u�q�u�q��� = q+q�
1

2����

, �1a�

�v�q�v�q��� = q+q�
1

2����

, �1b�

where �=m /2� is the density of states per spin and valley.
The total lifetime, �, then equals �see Fig. 1�

1

�
=

1

��

+
1

��

. �2�

B. Particle-hole diffusion propagators

The form of the particle-hole propagators �diffusons� for
the impurity model defined in Eq. �1� has been calculated in

Refs. 14 and 15. The calculations are extended here to in-
clude valley splitting.

The fluctuations in the diffuson channel, D�q ,��, have a
diffusive singularity D�q ,��=1 / �D0q2+ 	�	�. Finite valley
splitting and intervalley scattering introduce gaps in D�q ,��,
thus, cutting off the singularity. The different diffuson modes
involving fluctuations in the valley occupations are shown in
Fig. 2. The details of their derivation are given in Appendix
A.

We start by defining the elementary diffuson blocks, D�,u,
D�,v, and D�,�z

shown in Fig. 2. The diffuson blocks D� are
insensitive to valley splitting since both the particle and the
hole �corresponding to the top and bottom lines with arrows
moving to the right and left, respectively� belong to the same
valley. The �z index for the D�,�z

diffuson indicates the val-
ley index of the particle, with the hole being in the −�z val-
ley; the two valleys are nonequivalent for finite �v. In Ap-
pendix A, the equations satisfied by the diffuson propagators
are solved in the limit of weak splitting �v��1. The solu-
tions are expressed in terms of the diffusons D	

=D�,u	D�,v and D�,�z
, with the corresponding gaps �−

=2�� /����−��� and ��=�� /���. �Note that D+, correspond-
ing to the valley “singlet” mode, is gapless, hence, �+=0.�

In the limit when the intervalley scattering is much
weaker than the intravalley scattering, i.e., �����, the scat-
tering time ����. The gaps in this limit correspond to �−
�2 /�� and ���1 /��. In this weak scattering limit, rel-
evant to high-mobility MOSFETs, the form of the diffusons
obtained in Eqs. �A3� and �A4� reduces to �the overall factor
1 /2���2 is suppressed�

D+�q,�� =
1

D0q2 + 	�	
, �3a�

D−�q,�� =
1

D0q2 + 	�	 + 2��

, �3b�

D�,�z
�q,�� =

1

D0q2 + 	�	 − i�z�v + ��

, �3c�

where ��=1 /��. The number of modes that are effectively
gapless depends on the relative magnitude of T �or fre-
quency� with respect to the corresponding temperature scales
Tv and T�. At high-T all modes are gapless, while at the
lowest T only D+ remains gapless. �Note that the valley split-
ting term in Eq. �3c� is similar in structure to Zeeman
splitting.17�

FIG. 1. Diagrams contributing to 1 /� in Eq. �2� are shown. The
properties of the intravalley and intervalley impurity scatterings are
defined in Eq. �1� represented here by single and double dashed
lines, respectively.

FIG. 2. The various diffuson blocks in the presence of valley
splitting and intervalley scattering are shown.
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C. Electron-electron scattering amplitudes

In this section the relevant e-e interaction scattering am-
plitudes are identified. These amplitudes are conventionally
described by the standard static Fermi-liquid amplitudes �1
and �2 defined in terms of the spin texture of the scattering
of the particle-hole pairs. The amplitudes are easily general-
ized to include the valley degrees of freedom. They are
shown in Fig. 3. Note that the intervalley scattering ampli-
tudes �1� and �2,�,v are generally negligibly small in a clean
system because the Coulomb scattering involving large mo-
mentum Q0 in the z direction is suppressed when the width
of the inversion layer is many times larger than the lattice
spacing. It is more convenient to work in the same basis as
that used for the diffusons, i.e., �1	= 1

2 ��1,�,u	�1,�,v� and
�2	= ��2,�,u	�2,�,v�, as it allows for the amplitudes to be
easily combined with the diffusion modes.

III. DIFFUSION CORRECTIONS

It is now well understood that while the diffusion propa-
gators when combined with e-e scattering lead to the appear-
ance of logarithmic corrections to the resistivity �Altshuler-
Aronov corrections6,18�, the e-e scattering amplitudes
themselves develop logarithmic corrections due to the slow
diffusive relaxation.7 In this section, these logarithmic cor-
rections are obtained self-consistently in the limit of weak
valley splitting ��v��1� and weak intervalley scattering
�������.

The e-e interaction corrections to the diffusion propaga-
tors are expressed in terms of the “self-energy” matrix �.
The relevant diagrams are shown in Fig. 4. Expanding
��q ,�� to order q2 and � one obtains, for example, for the
gapless D+ propagator, the renormalized propagator
D+

−1�q ,��=Dq2+z�, where D is the renormalized diffusion
constant and z is the frequency renormalization parameter
that determines the change in the relative scaling of the fre-
quency with respect to the length scale7,19 �z=1 for noninter-
acting electrons�. The corresponding corrections to D and z
obtained by evaluating the diagrams in Fig. 4 are given in
Eq. �B1� in Appendix B.

The skeleton diagrams representing the diffusion correc-
tions to the e-e scattering amplitudes are shown in Fig. 5.
�For a detailed discussion of these corrections, see Refs. 8
and 9.� The calculations are generalized here to include val-
leys. By appropriately choosing the � vertices for given val-
ues of �z�= 	�z in Fig. 5 all the corrections, �i,�, to the
scattering amplitudes �i,�, where i=1,2 and �=	, can be
calculated. For example, to calculate �i+, since �i+=�i,�,u
+�i,�,v, the contributions from �z�= 	�z are added, while they
are subtracted when calculating �i−. The results are given in
Eq. �B2� in Appendix B. �The corrections to the amplitude
�� are not given as they are equal to �2+ for T�Tv and
irrelevant for T�Tv due to the gap.�

FIG. 3. The scattering amplitudes including the valley degrees
of freedom are classified in terms of the standard static Fermi-liquid
amplitudes �1 and �2. The same subscript convention used to clas-
sify the diffusons in Fig. 2 is used here.

FIG. 4. The skeleton diagrams for � are listed. � is the interac-
tion matrix and the hashed blocks are diffusion propagators. The �+

matrix is obtained by adding the contributions from �z�= 	�z. The
results are presented in Eq. �B1�.

FIG. 5. Skeleton diagrams for �i,�. By appropriately choosing
the � vertices for given values of �z�= 	�z all the corrections �i,�,
where i=1,2 and �=	, are calculated. Each combination of the
valley indices comes together with the appropriate diffuson matrix
elements. Note that going down the rows increases the number of �
vertices.
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The corrections D, z, and �i,� in Eqs. �B1� and �B2�
include all modes, both gapped and gapless. Clearly, only
modes that are effectively gapless lead to logarithmically di-
vergent corrections. Since the frequency integrations range
from T���1 /� �the upper cutoff follows from taking the
diffusion limit�, for T�T�, both D− and D� are gapped,
while only the D− modes are effectively gapless when T�

�T�Tv. �The D+ mode is always gapless.� Of course, when
T�Tv and T�, all modes are gapless. As a result, the correc-
tions are clearly sensitive to the temperature range consid-
ered.

A. High-temperature range: TœTv and T�

For T�Tv and T�, all the modes D� ��= 	 ,�� appear-
ing in Eqs. �B1� and �B2� are effectively gapless; i.e., they
take the form D�q ,��=1 / �Dq2+z��. As noted below, not all
amplitudes �i,� are relevant at these temperatures. For in-
stance, since intervalley scattering is irrelevant for T�T�,
the amplitudes �1� and �2,�,v, whose initial values are van-
ishingly small, can be set to zero. As a result �see Fig. 5�,
�1��0 and �2+��2−. Furthermore, since valley splitting
can be ignored for T�Tv, the amplitudes �1,�,u and �2� are
indistinguishable from the amplitudes �1,�,v and �2+, respec-
tively, implying that the initial value of �1−=0 and �2�

=�2+.
It can be seen from Eq. �B2� that choosing the above

initial conditions, namely, �1�=�1−=0, and setting all the
�2� amplitudes to be equal, and all the D� propagators to be
gapless, gives �1−=0 and �2−=�2+, which are consistent
with the choice of the initial conditions. Hence, Eqs. �B1�
and �B2� reduce to the form �with the substitution �2�
�2
and D�
D�

D

D
= −

4

�
� � d�

2�
��1+ − 4�2�D3�q,��Dq2, �4a�

z = −
1

��
� d2q

�2��2 ��1+ − 4�2�D�q,0� , �4b�

�1+ =
1

��
� d2q

�2��2�2D�q,0� + 4���2� , �4c�

�2 =
1

��
� d2q

�2��2�1+D�q,0� + 16���2� , �4d�

where ��=�d2q / �2��2�d� / �2�� and ���2� equals

���2� = +
1

�
� d2q

�2��2� d�

2�
�2��2D2� −

1

2
��2

2D2�

−
1

�
� d2q

�2��2� d�

2�
��2��2

2D3� − ��2
2��2D3�

−
2

�
� d2q

�2��2� d�

2�
�2�2

2��2
2D4� . �5�

The above equations were first obtained in Ref. 1; they
correspond to the case when the two valleys are distinct and
degenerate.

B. Low-temperature range: T›T�

When T�T�, both D− and D� are gapped and therefore
irrelevant. Hence, only the D+ mode survives. Dropping the
contributions of the gapped modes in Eqs. �B1� and �B2�
lead to a self-contained set of equations involving only the
amplitudes �1+ and �2+. The equations, after dropping the
+ sign in D+ and �2+, reduce to

D

D
= −

4

�
� � ��1+ − �2�D3�q,��Dq2, �6a�

z = −
1

��
� d2q

�2��2 ��1+ − �2�D�q,0� , �6b�

�1+ =
1

4��
� d2q

�2��2�2D�q,0� + ���2� , �6c�

�2 =
1

��
� d2q

�2��2�1+D�q,0� + 4���2� . �6d�

These equations correspond to the case when the two val-
leys appear as a single valley due to intervalley scattering.
�Note that valley splitting is irrelevant in this case as the D�

propagator is always gapped when T�T� irrespective of
Tv.�

C. Intermediate temperature range: T�›T›Tv

This limit when the valley splitting is large, so that the
intervalley scattering rate T��Tv, is interesting. For tem-
peratures in the intermediate range T��T�Tv, only the D�

mode is gapped, while both D	 are gapless. Although
the initial value of �1−�0 when T�Tv �see discussion in
Sec. III A� it can be seen from Eq. �B2� that �1−�0 when
T�Tv and is therefore generated at intermediate tempera-
tures. This introduces a third relevant scaling parameter dis-
tinct from the high- and low-temperature regimes. �Since
T�T�, �2+=�2−, but because T�Tv the �2� amplitude is
irrelevant.�

Dropping the D� terms in Eqs. �B1� and �B2� and setting
�2+=�2−
�2 and D	=D give

D

D
= −

4

�
� � ��1− + �1+ − 2�2�D3�q,��Dq2, �7a�

z = −
1

��
� d2q

�2��2 ��1− + �1+ − 2�2�D�q,0� , �7b�

�1+ = �1− =
1

2��
� d2q

�2��2�2D�q,0� + 2���2� , �7c�

�2 =
1

��
� d2q

�2��2 ��1+ + �1−�D�q,0� + 8���2� . �7d�

Note that although both �1+ and �1− are equal, their initial
values are different.

The relevance of the �1− amplitude in the temperature
range T��T�Tv is specific to problems with split bands
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and was first discussed in Ref. 11 for the case of spin-
splitting in a multivalley system.

IV. RENORMALIZATION GROUP EQUATIONS

In Sec. III, the leading logarithmic corrections in all the
different temperature ranges have been listed. It is now pos-
sible to set up the scaling equations. To this end, first note
that all the corrections involve only one momentum integra-
tion, and since every momentum integration generates a fac-
tor of 1 /D, which by Einstein’s relation is proportional to the
resistance �, the corrections are limited to the first order in
resistance �disorder�. The limitation on the number of mo-
mentum integrations also constrains the number of e-e verti-
ces in the skeleton diagrams shown in Figs. 4 and 5. These
corrections can now be extended to all orders in � �but still
first order in �� by performing ladder summations as shown
in Fig. 6. It amounts to replacing the static amplitudes � by
the dynamical amplitudes U�q ,�� as discussed below.

Since the ladder summations do not introduce additional
momentum integrations, the resummation allows the correc-
tions to be evaluated to infinite order in the interaction am-
plitude leaving � as the only expansion parameter in the
theory.7

For the amplitudes �2�, the ladder sums are most easily
done in the basis �=	 and �, as it can be checked by
inspection that the indices are conserved in the ladder. Using
�2� and D� in Fig. 6, one obtains the corresponding dynami-
cal amplitude U2��q ,��, where

U2��q,�� = �2�

D2��q,��
D��q,��

. �8�

The propagators D� are defined in Eq. �3� and

D2��q,�� =
1

Dq2 + �z + �2��� + ��

. �9�

It should be noted in, for example, Fig. 5, that only those
interaction vertices involving frequency integrations can be
extended to include dynamical effects. For convenience, the
corresponding �2 vertices are enclosed in square brackets in
the function � in Eq. �5�. Substituting for �2 in Eq. �5� with
U2 from Eq. �8� �the � index is dropped since only gapless
modes have been retained in Eq. �5�� and performing the q
and � integrals lead to the very simple expression7,9

���2� = �2
2

z
��

2
log 1

T�
� . �10�

The dimensional resistance �=1 /4�2�2�D� corresponds to
�e2 /�h�R�, where R� is the sheet resistance. The factor 4
arises due to the spin and valley degrees of freedom and � is

the density of states per spin and valley. Also note that up to
logarithmic accuracy the upper cutoff can be replaced with
1 /�. Since the remaining integrals in Eqs. �4a�–�4d�, �5�,
�6a�–�6d�, and �7a�–�7d� are of the form �d2qD�q ,0�, they
can be evaluated directly as

1

��
� d2q

�2��2D�q,0� = 2� log 1

T�
� . �11�

It remains to evaluate the integrals for D and z. The z
integrals do not involve frequency integrations and can
therefore be evaluated using Eq. �11�. The D corrections,
however, contain frequency integrals, and therefore the �1	

amplitudes, in addition to �2, are also to be extended to all
orders via the ladder sum.

This is most easily done in the spin-singlet basis

�s	 = �1	 −
1

4
�2	. �12�

This is so, because the spin and valley of the electron-hole
pairs in the singlet and triplet basis are individually con-
served in the ladder sum. �Note that the “+” amplitude is
written in the �spin-singlet� � �valley-singlet� basis, while the
“−” amplitude is in the �spin-singlet� � �valley-triplet� basis;
the valley-triplet corresponds to 	S=1, Sz=0�.� The corre-
sponding dynamical amplitudes Us	�q ,�� on performing the
ladder sum give

Us	�q,�� = �s	

Ds	�q,��
D	�q,��

, �13�

where

Ds	�q,�� =
1

Dq2 + �z − 4�s	�� + �	

. �14�

�Note that �+ is introduced for notational uniformity; in fact
�+=0.�

Special attention is to be paid to the ladder sums involv-
ing �s+ when Coulomb interactions are present. The �1+ am-
plitudes in this case include amplitudes of the kind shown in
Fig. 7, which can be separated by cutting the statically
screened long-ranged Coulomb line once. They are denoted
here as �0+. This distinction is important because the polar-
ization operator, ��q ,��, which is irreducible to cutting a
Coulomb line does not include �0+. �The corresponding �0−
and �0� amplitudes are zero. The former is identically zero,
while the latter involving intervalley scattering is vanishingly
small.�

FIG. 6. Extending the static amplitudes � by the corresponding
dynamic amplitudes U through ladder summations.

FIG. 7. The statically screened long-range part of the Coulomb
interaction, which can be separated by cutting just one Coulomb
line, is shown. The amplitude �0+ is obtained by adding the ampli-
tudes with �z�=	. The shaded triangles represent the static vertex
corrections V.

RENORMALIZATION GROUP STUDY OF INTERVALLEY… PHYSICAL REVIEW B 81, 035306 �2010�

035306-5



Analyzing the polarization operator, ��q ,��, provides
key insights into the relationship between the various ampli-
tudes �and z�.8,9 The form of ��q ,�� is analyzed here in the
presence of valleys. In the limit of q ,�→0, it can be shown
that ��q ,�� takes the form

��q,�� = −
�n

��
+

4V2�

Dq2 + �z − 4�s+��
. �15�

It is important to note that only the �s+ amplitude, corre-
sponding to the singlet mode, appears in the expression for
��q ,��. The factor �n /�� is the thermodynamic density of
states and the parameter V is the static vertex corrections
represented as shaded triangles in Fig. 7.

The two terms in Eq. �15� correspond to the static and the
dynamical contributions, respectively. By construction, the
static limit ��q→0,�=0�=−�n /�� is satisfied. In the oppo-
site limit, local conservation law requires that ��q=0,�
→0�=0. From Eq. �15� it can be seen that for the latter
condition to be satisfied the following relation must hold:

�n

��
=

4V2

z − 4�s+
�16�

in which case, ��q ,�� takes the form

��q,�� = −
�n

��

Dq2

Dq2 + �z − 4�s+��
. �17�

When Eq. �16� is combined with the definition of �0+ as
the static limit of the Coulomb interaction, i.e., �0+
=V2�� /�n, the following expression for �0+ is obtained:
�0+= 1

4 �z−4�s�. Hence, conservation laws provide the very
important relation

z = 4��0+ + �1+� − �2+ 
 4�s+
LR, �18�

where �s+
LR=�1+

LR−�2+ /4 denotes the singlet amplitude in the
presence of long-ranged Coulomb interactions. Since only
the Coulomb case is considered in the following, all the �1+
amplitudes appearing in Eqs. �4a�–�4d�, �5�, �6a�–�6d�, and
�7a�–�7d� are to be replaced by their long-ranged counter-
parts

�1+ → �1+
LR = �0+ + �1+. �19�

Direct inspection of Eqs. �4a�–�4d�, �5�, �6a�–�6d�, and
�7a�–�7d� shows that the singlet combination in Eq. �18� is
satisfied during the course of renormalization in all the tem-
perature ranges, i.e., �z−4�s

LR�=0, provided �0+=0. �This
is a well established result, with great importance for the
general structure of the theory.7,8� In particular, the corre-
sponding dynamical amplitude Us+

LR�q ,�� reads

Us+
LR�q,�� =

z

4Dq2

1

D�q,��
. �20�

Note that unlike the Us+ amplitude in Eq. �13�, Us+
LR is a

universal amplitude independent of �s+
LR. This is a direct con-

sequence of singlet relation �18�.6,7

The scaling equations discussed below are obtained from
Eqs. �4a�–�4d�, �5�, �6a�–�6d�, and �7a�–�7d� after �i� rear-
ranging all the �1	 amplitudes to give �s	 and then replac-

ing �s+ with �s+
LR, �ii� replacing the static amplitudes where

applicable by the corresponding dynamical amplitudes, and
�iii� substituting �=1 /4�2�2�D�.

It is convenient to express the equation for � in terms of
the scaling variables, �2=�2 /z and �v=−4�s− /z. In terms of
these variables, the equations for �, �2, and �v form a closed
set of equations independent of z. The final RG equations,
along with the equations for z, are given below. The scale
�=log�1 /T�� is used in these equations. To logarithmic ac-
curacy 1 /� can be used as the upper cutoff. The range of
applicability of � is defined in each case separately.

�1� High-temperature limit: T�Tv and T�,

d�

d�
= �2�1 − 15���2�� , �21a�

d�2

d�
=

�

2
�1 + �2�2, �21b�

d ln z

d�
= −

�

2
�1 − 15�2� . �21c�

�2� Low-temperature limit: T�T�,

d�

d�
= �2�1 − 3���2�� , �22a�

d�2

d�
=

�

2
�1 + �2�2, �22b�

d ln z

d�
= −

�

2
�1 − 3�2� . �22c�

�3� Intermediate temperature limit: T��T�Tv,

d�

d�
= �2�1 − ���v� − 6���2�� , �23a�

d�2

d�
=

�

2
��1 + �2�2 + �1 + �2���2 − �v�� , �23b�

d�v

d�
=

�

2
�1 + �v��1 − �v − 6�2� , �23c�

d ln z

d�
= −

�

2
�1 − �v − 6�2� . �23d�

The variable ���� is defined as

���� = 1 +
1

�
�log�1 + �� − 1. �24�

The factors 15 and 3 appearing in Eqs. �21� and �22�,
respectively, correspond to the number of effective triplet
modes. In the case of two distinct, degenerate valleys, the 16
spin-valley modes break up into one singlet and 15 “triplet”
modes, while in the limit of strong intervalley scattering the
two valleys are effectively combined into a single valley
leading to three spin-triplet modes.
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When the valleys are split, as in Eq. �23�, the amplitude
�v plays a significant role as the temperature is reduced well
below Tv. Given that �v= ��2−4�1−� /z and that �1−�0 for
T�Tv, it follows that �v��2 as T approaches Tv from
above. When T�Tv, the two amplitudes �2 and �v diverge
from each other significantly. For T�Tv, however, it is rea-
sonable to assume that �v��2. This is relevant if the lower
cutoff T� is not much smaller than Tv. In this case, the equa-
tion for � and �2 pertaining to the different temperature
ranges can be combined to give d� /d�=�2�1− �4K
−1����2��, and d�2 /d�=��1+�2�2 /2. Here, K=nv

2 =4 when
the valleys are degenerate and distinct �high temperature�,
K=nv

2 =1 when intervalley scattering is strong �low tempera-
ture�, and K=nv=2 when the valleys are distinct but split so
that each valley contributes independently �intermediate tem-
perature�. For direct comparison with experiments, these
simplified equations should suffice for most samples.

The situation changes, however, once T�Tv, but still
greater than T�. We see that �v and �2 evolve differently
until �v reaches the fixed point value of �v

� =−1 at which
point ��−1�=−1. �This fixed point is relevant only when
T��0.� The system at this point reduces to a single valley
system with resistance 2�. The above properties are generic
to systems with split bands �spin and valley� as has been
discussed in detail in Ref. 11.

To summarize, RG equations have been obtained in the
case when both valley splitting and intervalley scattering are
present. The results can be directly used to compare with
experiments in a two-valley system after adding the weak-
localization contributions, which are not included here. The
case when the two bands are split but otherwise distinct is
quantitatively different due to the existence of a third rel-
evant scaling parameter. The asymptotic metallic behavior is,
however, not affected.
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APPENDIX A: DIFFUSION PROPAGATORS

The ladder diagrams for each of the diffuson blocks, D�,u,
D�,v, and D�,�z

, are detailed in Fig. 8. The corresponding
equations are given in Eq. �A1�. Note that the D� diffusons
are coupled in the presence of intervalley scattering. For con-
venience, the scattering rates in Eq. �1� are defined as ��

=1 /2���� and ��=1 /2����,

D�,u = �� + ��X�D�,u + ��X�D�,v, �A1a�

D�,v = �� + ��X�D�,v + ��X�D�,u, �A1b�

D�,�z
= �� + ��X�,�z

D�,�z
, �A1c�

where

X��q,�� = �
k

G�z
�k + q,� + ��G�z

�k,��

� 2����1 − �� − �D0q2 + ¯� , �A2a�

X�,�z
�q,�� = �

k
G�z

�k + q,� + ��G−�z
�k,��

� 2����1 − �� − �D0q2 + i�z��v��� .

�A2b�

Here D is the diffusion constant. In the diffusion approxi-
mation, i.e., for ���+���0, it is sufficient to evaluate X in
the long wavelength and small frequency limit. Only the
weak splitting �v��1 limit is considered here.

Equations �A1a� and �A1b� are easily decoupled by defin-
ing

D	 = D�,u 	 D�,v =
1

2���2

1

D0q2 + � + �	

, �A3�

where �+=0 and �−=2�� /����−���. Note that D+ is gapless.
Substituting Eq. �A2b� in Eq. �A1c� gives for D�,�z

D�,�z
=

1

2���2

1

D0q2 + � − i�z�v + ��

, �A4�

where ��=�� /���.

APPENDIX B: DIFFUSION CORRECTIONS

The expressions for D and z extracted from the dia-
grams in Fig. 4 for the D+ propagator are given below:

D

D
= −

4

�
� � Dq2�D+

3�q,����1+ − �2+�

+ D−
3�q,����1− − �2−� + D�

3 �q,����1� − 2�2��� ,

�B1a�

FIG. 8. Ladder diagrams for the various diffuson blocks are
shown above. As in Fig. 1, the intravalley and intervalley impurity
scatterings are denoted by single and double dashed lines, respec-
tively. The particle and hole Green’s functions for finite �v corre-
spond to G�z

�k ,��= �i�− ��k−�z�v /2�+ i /2� sgn ��−1.

RENORMALIZATION GROUP STUDY OF INTERVALLEY… PHYSICAL REVIEW B 81, 035306 �2010�

035306-7



z = −
1

��
� d2q

�2��2 �D+�q,0���1+ − �2+�

+ D−�q,0���1− − �2−� + D��q,0���1� − 2�2��� .

�B1b�

�Note the factor of 2 in front of �2�; for convenience the �z

index is suppressed in the � terms.� The diffusion correc-
tions to the amplitudes �i,�, where i=1,2 and �=	, are
detailed below:

�1+ =
1

4��
� d2q

�2��2 ��2+D+ + �2−D− + 2�2�D��

+
1

�
� � �2+��2+D+

2 + �2−D−
2 + 2�2�D�

2 �

−
1

2
��2+

2 D+
2 + �2−

2 D−
2 + 2�2�

2 D�
2 �

−
1

�
� � ��2+��2+

2 D+
3 + �2−

2 D−
3 + 2�2�

2 D�
3 �

− ��2+
2 ��2+D+

3 + �2−D−
3 + 2�2�D�

3 �

−
1

2�
� � �2�2+

2 ��2+
2 D+

4 + �2−
2 D−

4 + 2�2�
2 D�

4 � ,

�B2a�

�2+ =
1

��
� d2q

�2��2 ��1+D+ + �1−D− + �1�D��

+
4

�
� � �2+��2+D+

2 + �2−D−
2 + 2�2�D�

2 �

−
1

2
��2+

2 D+
2 + �2−

2 D−
2 + 2�2�

2 D�
2 �

−
4

�
� � ��2+��2+

2 D+
3 + �2−

2 D−
3 + 2�2�

2 D�
3 �

− ��2+
2 ��2+D+

3 + �2−D−
3 + 2�2�D�

3 �

−
2

�
� � �2�2+

2 ��2+
2 D+

4 + �2−
2 D−

4 + 2�2�
2 D�

4 � ,

�B2b�

�1− =
1

4��
� d2q

�2��2 ��2+D− + �2−D+ − 2�2�D��

+
1

�
� � �2−���2+ + �2−�D+D− − 2�2�D�

2 �

−
1

2
��2−�2+�D+

2 + D−
2� − 2�2�

2 D�
2 �

+
4

�
� � �1−���1+ − �2+��D+D− − D+

2�

+ ��1− − �2−��D+D− − D−
2� − 2��1� − 2�2��D�

2 �

−
1

�
� � ��2−��2−�2+�D−

2D+ + D−D+
2�

− 2�2−�2�D�
3 � − ��2−

2 ��2+D+
2D− + �2−D+D−

2

− 2�2�D�
3 � −

1

�
� � �2�2−

2 ��2−�2+D+
2D−

2 − �2�
2 D�

4 � ,

�B2c�

�2− =
1

��
� d2q

�2��2 ��1+D− + �1−D+ − �1�D��

+
4

�
� � �2−��2+D+

2 + �2−D−
2 + 2�2�D�

2 �

−
1

2
��2−�2+D+

2 + �2−
2 D−

2 + 2�2�
2 D�

2 �

+
4

�
� � �2−��1+�D+D− − D+

2� + �1−�D+D− − D−
2�

− 2�1�D�
2 � −

4

�
� � ��2−��2+

2 D+
3 + �2−

2 D−
3

+ 2�2�
2 D�

3 � − ��2−�2+��2+D+
3 + �2−D−

3 + 2�2�D�
3 �

−
2

�
� � �2�2−�2+��2+

2 D+
4 + �2−

2 D−
4 + 2�2�

2 D�
4 � .

�B2d�

The terms above are ordered in correspondence with the
diagrams appearing in Fig. 5. The square brackets gather
vertices that come together with the diffuson propagators.
Note that the first term is unique in that it does not involve
frequency integration. �If these equations are calculated us-
ing perturbation theory, an additional wave-function renor-
malization term � appears.9 The renormalized amplitudes
given below correspond to ��2, with �=− 2

�����1+
−�2+�D+

2 + ��1−−�2−�D−
2 + ��1�−2�2��D�

2 . It should be
noted that the term � does not appear in the nonlinear sigma
model approach developed in Ref. 7.�
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